Highest vectors of representations (total 3) ; the vectors are over the primal subalgebra. | g7+g6 | g5+g3+g1 | g10 |
weight | ω1+ω2 | 2ω3 | ω1+ω2+2ω3 |
Isotypical components + highest weight | Vω1+ω2 → (1, 1, 0) | V2ω3 → (0, 0, 2) | Vω1+ω2+2ω3 → (1, 1, 2) | ||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | ||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| Semisimple subalgebra component.
|
| ||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω3 0 −2ω3 | ω1+ω2+2ω3 −ω1+2ω2+2ω3 2ω1−ω2+2ω3 ω1+ω2 2ω3 −ω1+2ω2 2ω3 2ω1−ω2 ω1+ω2−2ω3 −2ω1+ω2+2ω3 ω1−2ω2+2ω3 0 −ω1+2ω2−2ω3 0 2ω1−ω2−2ω3 −ω1−ω2+2ω3 −2ω1+ω2 ω1−2ω2 −2ω3 −2ω3 −ω1−ω2 −2ω1+ω2−2ω3 ω1−2ω2−2ω3 −ω1−ω2−2ω3 | ||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | ω1+ω2 −ω1+2ω2 2ω1−ω2 0 0 −2ω1+ω2 ω1−2ω2 −ω1−ω2 | 2ω3 0 −2ω3 | ω1+ω2+2ω3 −ω1+2ω2+2ω3 2ω1−ω2+2ω3 ω1+ω2 2ω3 −ω1+2ω2 2ω3 2ω1−ω2 ω1+ω2−2ω3 −2ω1+ω2+2ω3 ω1−2ω2+2ω3 0 −ω1+2ω2−2ω3 0 2ω1−ω2−2ω3 −ω1−ω2+2ω3 −2ω1+ω2 ω1−2ω2 −2ω3 −2ω3 −ω1−ω2 −2ω1+ω2−2ω3 ω1−2ω2−2ω3 −ω1−ω2−2ω3 | ||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω3⊕M0⊕M−2ω3 | Mω1+ω2+2ω3⊕M−ω1+2ω2+2ω3⊕M2ω1−ω2+2ω3⊕2M2ω3⊕Mω1+ω2⊕M−2ω1+ω2+2ω3⊕Mω1−2ω2+2ω3⊕M−ω1+2ω2⊕M2ω1−ω2⊕M−ω1−ω2+2ω3⊕2M0⊕Mω1+ω2−2ω3⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1+2ω2−2ω3⊕M2ω1−ω2−2ω3⊕M−ω1−ω2⊕2M−2ω3⊕M−2ω1+ω2−2ω3⊕Mω1−2ω2−2ω3⊕M−ω1−ω2−2ω3 | ||||||||||||||||||||||||||||||||||||||
Isotypic character | Mω1+ω2⊕M−ω1+2ω2⊕M2ω1−ω2⊕2M0⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1−ω2 | M2ω3⊕M0⊕M−2ω3 | Mω1+ω2+2ω3⊕M−ω1+2ω2+2ω3⊕M2ω1−ω2+2ω3⊕2M2ω3⊕Mω1+ω2⊕M−2ω1+ω2+2ω3⊕Mω1−2ω2+2ω3⊕M−ω1+2ω2⊕M2ω1−ω2⊕M−ω1−ω2+2ω3⊕2M0⊕Mω1+ω2−2ω3⊕M−2ω1+ω2⊕Mω1−2ω2⊕M−ω1+2ω2−2ω3⊕M2ω1−ω2−2ω3⊕M−ω1−ω2⊕2M−2ω3⊕M−2ω1+ω2−2ω3⊕Mω1−2ω2−2ω3⊕M−ω1−ω2−2ω3 |
2 & | -1 & | 0\\ |
-1 & | 2 & | 0\\ |
0 & | 0 & | 2\\ |