Subalgebra A22+A31A15
30 out of 37
Computations done by the calculator project.

Subalgebra type: A22+A31 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A22 .
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: A15

Elements Cartan subalgebra scaled to act by two by components: A22: (1, 2, 2, 2, 1): 4, (0, 0, -1, -2, -1): 4, A31: (1, 0, 1, 0, 1): 6
Dimension of subalgebra generated by predefined or computed generators: 11.
Negative simple generators: g13+g14, g9+g8, g1+g3+g5
Positive simple generators: g14+g13, g8+g9, g5+g3+g1
Cartan symmetric matrix: (11/201/210002/3)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (420240006)
Decomposition of ambient Lie algebra: Vω1+ω2+2ω3V2ω3Vω1+ω2
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 3) ; the vectors are over the primal subalgebra.g7+g6g5+g3+g1g10
weightω1+ω22ω3ω1+ω2+2ω3
Isotypic module decomposition over primal subalgebra (total 3 isotypic components).
Isotypical components + highest weightVω1+ω2 → (1, 1, 0)V2ω3 → (0, 0, 2)Vω1+ω2+2ω3 → (1, 1, 2)
Module label W1W2W3
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
g7g6
g8g9
g14+g13
h52h4h3
h52h42h32h2h1
g13g14
2g9+2g8
g6g7
Semisimple subalgebra component.
g5g3g1
h5+h3+h1
2g1+2g3+2g5
g10
g4
g15
g7g6
g5+g3
g8+g9
g5+g1
g14+g13
2g2
g11
2g12
h5h3
2g12
h5h1
2g11
g2
g13+g14
2g9+2g8
2g3+2g5
2g1+2g5
g6+g7
2g15
4g4
2g10
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as aboveω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω3
0
2ω3
ω1+ω2+2ω3
ω1+2ω2+2ω3
2ω1ω2+2ω3
ω1+ω2
2ω3
ω1+2ω2
2ω3
2ω1ω2
ω1+ω22ω3
2ω1+ω2+2ω3
ω12ω2+2ω3
0
ω1+2ω22ω3
0
2ω1ω22ω3
ω1ω2+2ω3
2ω1+ω2
ω12ω2
2ω3
2ω3
ω1ω2
2ω1+ω22ω3
ω12ω22ω3
ω1ω22ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizerω1+ω2
ω1+2ω2
2ω1ω2
0
0
2ω1+ω2
ω12ω2
ω1ω2
2ω3
0
2ω3
ω1+ω2+2ω3
ω1+2ω2+2ω3
2ω1ω2+2ω3
ω1+ω2
2ω3
ω1+2ω2
2ω3
2ω1ω2
ω1+ω22ω3
2ω1+ω2+2ω3
ω12ω2+2ω3
0
ω1+2ω22ω3
0
2ω1ω22ω3
ω1ω2+2ω3
2ω1+ω2
ω12ω2
2ω3
2ω3
ω1ω2
2ω1+ω22ω3
ω12ω22ω3
ω1ω22ω3
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.Mω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω3M0M2ω3Mω1+ω2+2ω3Mω1+2ω2+2ω3M2ω1ω2+2ω32M2ω3Mω1+ω2M2ω1+ω2+2ω3Mω12ω2+2ω3Mω1+2ω2M2ω1ω2Mω1ω2+2ω32M0Mω1+ω22ω3M2ω1+ω2Mω12ω2Mω1+2ω22ω3M2ω1ω22ω3Mω1ω22M2ω3M2ω1+ω22ω3Mω12ω22ω3Mω1ω22ω3
Isotypic characterMω1+ω2Mω1+2ω2M2ω1ω22M0M2ω1+ω2Mω12ω2Mω1ω2M2ω3M0M2ω3Mω1+ω2+2ω3Mω1+2ω2+2ω3M2ω1ω2+2ω32M2ω3Mω1+ω2M2ω1+ω2+2ω3Mω12ω2+2ω3Mω1+2ω2M2ω1ω2Mω1ω2+2ω32M0Mω1+ω22ω3M2ω1+ω2Mω12ω2Mω1+2ω22ω3M2ω1ω22ω3Mω1ω22M2ω3M2ω1+ω22ω3Mω12ω22ω3Mω1ω22ω3

Semisimple subalgebra: W_{1}+W_{2}
Centralizer extension: 0

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 420.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00)
(0.00, 1.00, 0.00)
0: (1.00, 0.00, 0.00): (333.33, 486.67)
1: (0.00, 1.00, 0.00): (266.67, 553.33)
2: (0.00, 0.00, 1.00): (200.00, 420.00)




Made total 5038281 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
3*2 (unknown) gens:
(
x_{1} g_{-13}+x_{2} g_{-14}, x_{9} g_{14}+x_{8} g_{13},
x_{3} g_{9}+x_{4} g_{8}, x_{11} g_{-8}+x_{10} g_{-9},
x_{5} g_{-1}+x_{6} g_{-3}+x_{7} g_{-5}, x_{14} g_{5}+x_{13} g_{3}+x_{12} g_{1})
h: (1, 2, 2, 2, 1), e = combination of g_{13} g_{14} , f= combination of g_{-13} g_{-14} h: (0, 0, -1, -2, -1), e = combination of g_{-9} g_{-8} , f= combination of g_{9} g_{8} h: (1, 0, 1, 0, 1), e = combination of g_{1} g_{3} g_{5} , f= combination of g_{-1} g_{-3} g_{-5} Positive weight subsystem: 4 vectors: (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)
Symmetric Cartan default scale: \begin{pmatrix}
2 & -1 & 0\\
-1 & 2 & 0\\
0 & 0 & 2\\
\end{pmatrix}Character ambient Lie algebra: V_{\omega_{1}+\omega_{2}+2\omega_{3}}+V_{-\omega_{1}+2\omega_{2}+2\omega_{3}}+V_{2\omega_{1}-\omega_{2}+2\omega_{3}}+3V_{2\omega_{3}}+2V_{\omega_{1}+\omega_{2}}+V_{-2\omega_{1}+\omega_{2}+2\omega_{3}}+V_{\omega_{1}-2\omega_{2}+2\omega_{3}}+2V_{-\omega_{1}+2\omega_{2}}+2V_{2\omega_{1}-\omega_{2}}+V_{-\omega_{1}-\omega_{2}+2\omega_{3}}+5V_{0}+V_{\omega_{1}+\omega_{2}-2\omega_{3}}+2V_{-2\omega_{1}+\omega_{2}}+2V_{\omega_{1}-2\omega_{2}}+V_{-\omega_{1}+2\omega_{2}-2\omega_{3}}+V_{2\omega_{1}-\omega_{2}-2\omega_{3}}+2V_{-\omega_{1}-\omega_{2}}+3V_{-2\omega_{3}}+V_{-2\omega_{1}+\omega_{2}-2\omega_{3}}+V_{\omega_{1}-2\omega_{2}-2\omega_{3}}+V_{-\omega_{1}-\omega_{2}-2\omega_{3}}
A necessary system to realize the candidate subalgebra.
x_{1} x_{8} -1= 0
x_{2} x_{9} +x_{1} x_{8} -2= 0
x_{2} x_{9} -1= 0
x_{2} x_{14} -x_{1} x_{12} = 0
x_{8} x_{14} -x_{9} x_{12} = 0
x_{1} x_{7} -x_{2} x_{5} = 0
x_{4} x_{11} +x_{3} x_{10} -2= 0
x_{3} x_{10} -1= 0
x_{4} x_{11} -1= 0
x_{4} x_{14} -x_{3} x_{13} = 0
x_{10} x_{14} -x_{11} x_{13} = 0
x_{3} x_{7} -x_{4} x_{6} = 0
x_{5} x_{12} -1= 0
x_{6} x_{13} -1= 0
x_{7} x_{14} -1= 0
x_{7} x_{9} -x_{5} x_{8} = 0
x_{7} x_{11} -x_{6} x_{10} = 0
The above system after transformation.
x_{1} x_{8} -1= 0
x_{2} x_{9} +x_{1} x_{8} -2= 0
x_{2} x_{9} -1= 0
x_{2} x_{14} -x_{1} x_{12} = 0
x_{8} x_{14} -x_{9} x_{12} = 0
x_{1} x_{7} -x_{2} x_{5} = 0
x_{4} x_{11} +x_{3} x_{10} -2= 0
x_{3} x_{10} -1= 0
x_{4} x_{11} -1= 0
x_{4} x_{14} -x_{3} x_{13} = 0
x_{10} x_{14} -x_{11} x_{13} = 0
x_{3} x_{7} -x_{4} x_{6} = 0
x_{5} x_{12} -1= 0
x_{6} x_{13} -1= 0
x_{7} x_{14} -1= 0
x_{7} x_{9} -x_{5} x_{8} = 0
x_{7} x_{11} -x_{6} x_{10} = 0
For the calculator:
(DynkinType =A^{2}_2+A^{3}_1; ElementsCartan =((1, 2, 2, 2, 1), (0, 0, -1, -2, -1), (1, 0, 1, 0, 1)); generators =(x_{1} g_{-13}+x_{2} g_{-14}, x_{9} g_{14}+x_{8} g_{13}, x_{3} g_{9}+x_{4} g_{8}, x_{11} g_{-8}+x_{10} g_{-9}, x_{5} g_{-1}+x_{6} g_{-3}+x_{7} g_{-5}, x_{14} g_{5}+x_{13} g_{3}+x_{12} g_{1}) );
FindOneSolutionSerreLikePolynomialSystem{}( x_{1} x_{8} -1, x_{2} x_{9} +x_{1} x_{8} -2, x_{2} x_{9} -1, x_{2} x_{14} -x_{1} x_{12} , x_{8} x_{14} -x_{9} x_{12} , x_{1} x_{7} -x_{2} x_{5} , x_{4} x_{11} +x_{3} x_{10} -2, x_{3} x_{10} -1, x_{4} x_{11} -1, x_{4} x_{14} -x_{3} x_{13} , x_{10} x_{14} -x_{11} x_{13} , x_{3} x_{7} -x_{4} x_{6} , x_{5} x_{12} -1, x_{6} x_{13} -1, x_{7} x_{14} -1, x_{7} x_{9} -x_{5} x_{8} , x_{7} x_{11} -x_{6} x_{10} )